Initial commit

This commit is contained in:
La Ancapo 2026-01-25 02:27:22 +01:00
commit c101616e62
309 changed files with 53937 additions and 0 deletions

View file

@ -0,0 +1,170 @@
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE CPP #-}
#if !(MIN_VERSION_base(4,9,0))
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveDataTypeable #-}
#endif
module Basement.Compat.Semigroup
( Semigroup(..)
, ListNonEmpty(..)
) where
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup
import qualified Data.List.NonEmpty as LNE
type ListNonEmpty = LNE.NonEmpty
#else
import Prelude
import Data.Data (Data)
import Data.Monoid (Monoid(..))
import GHC.Generics (Generic)
import Data.Typeable
-- errorWithoutStackTrace
infixr 6 <>
infixr 5 :|
data ListNonEmpty a = a :| [a]
deriving ( Eq, Ord, Show, Read, Data, Typeable, Generic )
-- | The class of semigroups (types with an associative binary operation).
--
-- @since 4.9.0.0
class Semigroup a where
-- | An associative operation.
--
-- @
-- (a '<>' b) '<>' c = a '<>' (b '<>' c)
-- @
--
-- If @a@ is also a 'Monoid' we further require
--
-- @
-- ('<>') = 'mappend'
-- @
(<>) :: a -> a -> a
default (<>) :: Monoid a => a -> a -> a
(<>) = mappend
-- | Reduce a non-empty list with @\<\>@
--
-- The default definition should be sufficient, but this can be
-- overridden for efficiency.
--
sconcat :: ListNonEmpty a -> a
sconcat (a :| as) = go a as where
go b (c:cs) = b <> go c cs
go b [] = b
-- | Repeat a value @n@ times.
--
-- Given that this works on a 'Semigroup' it is allowed to fail if
-- you request 0 or fewer repetitions, and the default definition
-- will do so.
--
-- By making this a member of the class, idempotent semigroups and monoids can
-- upgrade this to execute in /O(1)/ by picking
-- @stimes = stimesIdempotent@ or @stimes = stimesIdempotentMonoid@
-- respectively.
stimes :: Integral b => b -> a -> a
stimes y0 x0
| y0 <= 0 = errorWithoutStackTrace "stimes: positive multiplier expected"
| otherwise = f x0 y0
where
f x y
| even y = f (x <> x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x <> x) (pred y `quot` 2) x
g x y z
| even y = g (x <> x) (y `quot` 2) z
| y == 1 = x <> z
| otherwise = g (x <> x) (pred y `quot` 2) (x <> z)
instance Semigroup a => Semigroup (Maybe a) where
Nothing <> b = b
a <> Nothing = a
Just a <> Just b = Just (a <> b)
stimes _ Nothing = Nothing
stimes n (Just a) = case compare n 0 of
LT -> errorWithoutStackTrace "stimes: Maybe, negative multiplier"
EQ -> Nothing
GT -> Just (stimes n a)
instance Semigroup [a] where
(<>) = (++)
instance Semigroup (Either a b) where
Left _ <> b = b
a <> _ = a
stimes = stimesIdempotent
instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
(a,b) <> (a',b') = (a<>a',b<>b')
stimes n (a,b) = (stimes n a, stimes n b)
instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where
(a,b,c) <> (a',b',c') = (a<>a',b<>b',c<>c')
stimes n (a,b,c) = (stimes n a, stimes n b, stimes n c)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d)
=> Semigroup (a, b, c, d) where
(a,b,c,d) <> (a',b',c',d') = (a<>a',b<>b',c<>c',d<>d')
stimes n (a,b,c,d) = (stimes n a, stimes n b, stimes n c, stimes n d)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e)
=> Semigroup (a, b, c, d, e) where
(a,b,c,d,e) <> (a',b',c',d',e') = (a<>a',b<>b',c<>c',d<>d',e<>e')
stimes n (a,b,c,d,e) =
(stimes n a, stimes n b, stimes n c, stimes n d, stimes n e)
-- | This is a valid definition of 'stimes' for a 'Monoid'.
--
-- Unlike the default definition of 'stimes', it is defined for 0
-- and so it should be preferred where possible.
stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
stimesMonoid n x0 = case compare n 0 of
LT -> errorWithoutStackTrace "stimesMonoid: negative multiplier"
EQ -> mempty
GT -> f x0 n
where
f x y
| even y = f (x `mappend` x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x `mappend` x) (pred y `quot` 2) x
g x y z
| even y = g (x `mappend` x) (y `quot` 2) z
| y == 1 = x `mappend` z
| otherwise = g (x `mappend` x) (pred y `quot` 2) (x `mappend` z)
-- | This is a valid definition of 'stimes' for an idempotent 'Monoid'.
--
-- When @mappend x x = x@, this definition should be preferred, because it
-- works in /O(1)/ rather than /O(log n)/
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid n x = case compare n 0 of
LT -> errorWithoutStackTrace "stimesIdempotentMonoid: negative multiplier"
EQ -> mempty
GT -> x
-- | This is a valid definition of 'stimes' for an idempotent 'Semigroup'.
--
-- When @x <> x = x@, this definition should be preferred, because it
-- works in /O(1)/ rather than /O(log n)/.
stimesIdempotent :: Integral b => b -> a -> a
stimesIdempotent n x
| n <= 0 = errorWithoutStackTrace "stimesIdempotent: positive multiplier expected"
| otherwise = x
#if !MIN_VERSION_base(4,9,0)
errorWithoutStackTrace = error
#endif
#endif