stellar-veritas/bundled/Basement/Block.hs
2026-01-25 02:27:22 +01:00

447 lines
14 KiB
Haskell

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE NoImplicitPrelude #-}
-- |
-- Module : Basement.Block
-- License : BSD-style
-- Maintainer : Haskell Foundation
--
-- A block of memory that contains elements of a type,
-- very similar to an unboxed array but with the key difference:
--
-- * It doesn't have slicing capability (no cheap take or drop)
-- * It consume less memory: 1 Offset, 1 CountOf
-- * It's unpackable in any constructor
-- * It uses unpinned memory by default
--
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeOperators #-}
module Basement.Block
( Block(..)
, MutableBlock(..)
-- * Properties
, length
-- * Lowlevel functions
, unsafeThaw
, unsafeFreeze
, unsafeIndex
, thaw
, freeze
, copy
, unsafeCast
, cast
-- * safer api
, empty
, create
, isPinned
, isMutablePinned
, singleton
, replicate
, index
, map
, foldl'
, foldr
, foldl1'
, foldr1
, cons
, snoc
, uncons
, unsnoc
, sub
, splitAt
, revSplitAt
, splitOn
, break
, breakEnd
, span
, elem
, all
, any
, find
, filter
, reverse
, sortBy
, intersperse
-- * Foreign interfaces
, createFromPtr
, unsafeCopyToPtr
, withPtr
) where
import GHC.Prim
import GHC.Types
import GHC.ST
import qualified Data.List
import Basement.Compat.Base
import Data.Proxy
import Basement.Compat.Primitive
import Basement.NonEmpty
import Basement.Types.OffsetSize
import Basement.Monad
import Basement.Exception
import Basement.PrimType
import qualified Basement.Block.Mutable as M
import Basement.Block.Mutable (Block(..), MutableBlock(..), new, unsafeThaw, unsafeFreeze)
import Basement.Block.Base
import Basement.Numerical.Additive
import Basement.Numerical.Subtractive
import Basement.Numerical.Multiplicative
import qualified Basement.Alg.Mutable as MutAlg
import qualified Basement.Alg.Class as Alg
import qualified Basement.Alg.PrimArray as Alg
instance (PrimMonad prim, st ~ PrimState prim, PrimType ty)
=> Alg.RandomAccess (MutableBlock ty st) prim ty where
read (MutableBlock mba) = primMbaRead mba
write (MutableBlock mba) = primMbaWrite mba
instance (PrimType ty) => Alg.Indexable (Block ty) ty where
index (Block ba) = primBaIndex ba
{-# INLINE index #-}
instance Alg.Indexable (Block Word8) Word64 where
index (Block ba) = primBaIndex ba
{-# INLINE index #-}
-- | Copy all the block content to the memory starting at the destination address
unsafeCopyToPtr :: forall ty prim . PrimMonad prim
=> Block ty -- ^ the source block to copy
-> Ptr ty -- ^ The destination address where the copy is going to start
-> prim ()
unsafeCopyToPtr (Block blk) (Ptr p) = primitive $ \s1 ->
(# copyByteArrayToAddr# blk 0# p (sizeofByteArray# blk) s1, () #)
-- | Create a new array of size @n by settings each cells through the
-- function @f.
create :: forall ty . PrimType ty
=> CountOf ty -- ^ the size of the block (in element of ty)
-> (Offset ty -> ty) -- ^ the function that set the value at the index
-> Block ty -- ^ the array created
create n initializer
| n == 0 = mempty
| otherwise = runST $ do
mb <- new n
M.iterSet initializer mb
unsafeFreeze mb
-- | Freeze a chunk of memory pointed, of specific size into a new unboxed array
createFromPtr :: PrimType ty
=> Ptr ty
-> CountOf ty
-> IO (Block ty)
createFromPtr p sz = do
mb <- new sz
M.copyFromPtr p mb 0 sz
unsafeFreeze mb
singleton :: PrimType ty => ty -> Block ty
singleton ty = create 1 (const ty)
replicate :: PrimType ty => CountOf ty -> ty -> Block ty
replicate sz ty = create sz (const ty)
-- | Thaw a Block into a MutableBlock
--
-- the Block is not modified, instead a new Mutable Block is created
-- and its content is copied to the mutable block
thaw :: (PrimMonad prim, PrimType ty) => Block ty -> prim (MutableBlock ty (PrimState prim))
thaw array = do
ma <- M.unsafeNew Unpinned (lengthBytes array)
M.unsafeCopyBytesRO ma 0 array 0 (lengthBytes array)
pure ma
{-# INLINE thaw #-}
-- | Freeze a MutableBlock into a Block, copying all the data
--
-- If the data is modified in the mutable block after this call, then
-- the immutable Block resulting is not impacted.
freeze :: (PrimType ty, PrimMonad prim) => MutableBlock ty (PrimState prim) -> prim (Block ty)
freeze ma = do
ma' <- unsafeNew Unpinned len
M.unsafeCopyBytes ma' 0 ma 0 len
--M.copyAt ma' (Offset 0) ma (Offset 0) len
unsafeFreeze ma'
where
len = M.mutableLengthBytes ma
-- | Copy every cells of an existing Block to a new Block
copy :: PrimType ty => Block ty -> Block ty
copy array = runST (thaw array >>= unsafeFreeze)
-- | Return the element at a specific index from an array.
--
-- If the index @n is out of bounds, an error is raised.
index :: PrimType ty => Block ty -> Offset ty -> ty
index array n
| isOutOfBound n len = outOfBound OOB_Index n len
| otherwise = unsafeIndex array n
where
!len = length array
{-# INLINE index #-}
-- | Map all element 'a' from a block to a new block of 'b'
map :: (PrimType a, PrimType b) => (a -> b) -> Block a -> Block b
map f a = create lenB (\i -> f $ unsafeIndex a (offsetCast Proxy i))
where !lenB = sizeCast (Proxy :: Proxy (a -> b)) (length a)
foldr :: PrimType ty => (ty -> a -> a) -> a -> Block ty -> a
foldr f initialAcc vec = loop 0
where
!len = length vec
loop !i
| i .==# len = initialAcc
| otherwise = unsafeIndex vec i `f` loop (i+1)
{-# SPECIALIZE [2] foldr :: (Word8 -> a -> a) -> a -> Block Word8 -> a #-}
foldl' :: PrimType ty => (a -> ty -> a) -> a -> Block ty -> a
foldl' f initialAcc vec = loop 0 initialAcc
where
!len = length vec
loop !i !acc
| i .==# len = acc
| otherwise = loop (i+1) (f acc (unsafeIndex vec i))
{-# SPECIALIZE [2] foldl' :: (a -> Word8 -> a) -> a -> Block Word8 -> a #-}
foldl1' :: PrimType ty => (ty -> ty -> ty) -> NonEmpty (Block ty) -> ty
foldl1' f (NonEmpty arr) = loop 1 (unsafeIndex arr 0)
where
!len = length arr
loop !i !acc
| i .==# len = acc
| otherwise = loop (i+1) (f acc (unsafeIndex arr i))
{-# SPECIALIZE [3] foldl1' :: (Word8 -> Word8 -> Word8) -> NonEmpty (Block Word8) -> Word8 #-}
foldr1 :: PrimType ty => (ty -> ty -> ty) -> NonEmpty (Block ty) -> ty
foldr1 f arr = let (initialAcc, rest) = revSplitAt 1 $ getNonEmpty arr
in foldr f (unsafeIndex initialAcc 0) rest
cons :: PrimType ty => ty -> Block ty -> Block ty
cons e vec
| len == 0 = singleton e
| otherwise = runST $ do
muv <- new (len + 1)
M.unsafeCopyElementsRO muv 1 vec 0 len
M.unsafeWrite muv 0 e
unsafeFreeze muv
where
!len = length vec
snoc :: PrimType ty => Block ty -> ty -> Block ty
snoc vec e
| len == 0 = singleton e
| otherwise = runST $ do
muv <- new (len + 1)
M.unsafeCopyElementsRO muv 0 vec 0 len
M.unsafeWrite muv (0 `offsetPlusE` len) e
unsafeFreeze muv
where
!len = length vec
sub :: PrimType ty => Block ty -> Offset ty -> Offset ty -> Block ty
sub blk start end
| start >= end' = mempty
| otherwise = runST $ do
dst <- new newLen
M.unsafeCopyElementsRO dst 0 blk start newLen
unsafeFreeze dst
where
newLen = end' - start
end' = min (sizeAsOffset len) end
!len = length blk
uncons :: PrimType ty => Block ty -> Maybe (ty, Block ty)
uncons vec
| nbElems == 0 = Nothing
| otherwise = Just (unsafeIndex vec 0, sub vec 1 (0 `offsetPlusE` nbElems))
where
!nbElems = length vec
unsnoc :: PrimType ty => Block ty -> Maybe (Block ty, ty)
unsnoc vec = case length vec - 1 of
Nothing -> Nothing
Just offset -> Just (sub vec 0 lastElem, unsafeIndex vec lastElem)
where !lastElem = 0 `offsetPlusE` offset
splitAt :: PrimType ty => CountOf ty -> Block ty -> (Block ty, Block ty)
splitAt nbElems blk
| nbElems <= 0 = (mempty, blk)
| Just nbTails <- length blk - nbElems, nbTails > 0 = runST $ do
left <- new nbElems
right <- new nbTails
M.unsafeCopyElementsRO left 0 blk 0 nbElems
M.unsafeCopyElementsRO right 0 blk (sizeAsOffset nbElems) nbTails
(,) <$> unsafeFreeze left <*> unsafeFreeze right
| otherwise = (blk, mempty)
{-# SPECIALIZE [2] splitAt :: CountOf Word8 -> Block Word8 -> (Block Word8, Block Word8) #-}
revSplitAt :: PrimType ty => CountOf ty -> Block ty -> (Block ty, Block ty)
revSplitAt n blk
| n <= 0 = (mempty, blk)
| Just nbElems <- length blk - n = let (x, y) = splitAt nbElems blk in (y, x)
| otherwise = (blk, mempty)
break :: PrimType ty => (ty -> Bool) -> Block ty -> (Block ty, Block ty)
break predicate blk = findBreak 0
where
!len = length blk
findBreak !i
| i .==# len = (blk, mempty)
| predicate (unsafeIndex blk i) = splitAt (offsetAsSize i) blk
| otherwise = findBreak (i + 1)
{-# INLINE findBreak #-}
{-# SPECIALIZE [2] break :: (Word8 -> Bool) -> Block Word8 -> (Block Word8, Block Word8) #-}
breakEnd :: PrimType ty => (ty -> Bool) -> Block ty -> (Block ty, Block ty)
breakEnd predicate blk
| k == sentinel = (blk, mempty)
| otherwise = splitAt (offsetAsSize (k+1)) blk
where
!k = Alg.revFindIndexPredicate predicate blk 0 end
!end = sizeAsOffset $ length blk
{-# SPECIALIZE [2] breakEnd :: (Word8 -> Bool) -> Block Word8 -> (Block Word8, Block Word8) #-}
span :: PrimType ty => (ty -> Bool) -> Block ty -> (Block ty, Block ty)
span p = break (not . p)
elem :: PrimType ty => ty -> Block ty -> Bool
elem v blk = loop 0
where
!len = length blk
loop !i
| i .==# len = False
| unsafeIndex blk i == v = True
| otherwise = loop (i+1)
{-# SPECIALIZE [2] elem :: Word8 -> Block Word8 -> Bool #-}
all :: PrimType ty => (ty -> Bool) -> Block ty -> Bool
all p blk = loop 0
where
!len = length blk
loop !i
| i .==# len = True
| p (unsafeIndex blk i) = loop (i+1)
| otherwise = False
{-# SPECIALIZE [2] all :: (Word8 -> Bool) -> Block Word8 -> Bool #-}
any :: PrimType ty => (ty -> Bool) -> Block ty -> Bool
any p blk = loop 0
where
!len = length blk
loop !i
| i .==# len = False
| p (unsafeIndex blk i) = True
| otherwise = loop (i+1)
{-# SPECIALIZE [2] any :: (Word8 -> Bool) -> Block Word8 -> Bool #-}
splitOn :: PrimType ty => (ty -> Bool) -> Block ty -> [Block ty]
splitOn predicate blk
| len == 0 = [mempty]
| otherwise = go 0 0
where
!len = length blk
go !prevIdx !idx
| idx .==# len = [sub blk prevIdx idx]
| otherwise =
let e = unsafeIndex blk idx
idx' = idx + 1
in if predicate e
then sub blk prevIdx idx : go idx' idx'
else go prevIdx idx'
find :: PrimType ty => (ty -> Bool) -> Block ty -> Maybe ty
find predicate vec = loop 0
where
!len = length vec
loop i
| i .==# len = Nothing
| otherwise =
let e = unsafeIndex vec i
in if predicate e then Just e else loop (i+1)
filter :: PrimType ty => (ty -> Bool) -> Block ty -> Block ty
filter predicate vec = fromList $ Data.List.filter predicate $ toList vec
reverse :: forall ty . PrimType ty => Block ty -> Block ty
reverse blk
| len == 0 = mempty
| otherwise = runST $ do
mb <- new len
go mb
unsafeFreeze mb
where
!len = length blk
!endOfs = 0 `offsetPlusE` len
go :: MutableBlock ty s -> ST s ()
go mb = loop endOfs 0
where
loop o i
| i .==# len = pure ()
| otherwise = unsafeWrite mb o' (unsafeIndex blk i) >> loop o' (i+1)
where o' = pred o
sortBy :: PrimType ty => (ty -> ty -> Ordering) -> Block ty -> Block ty
sortBy ford vec
| len == 0 = mempty
| otherwise = runST $ do
mblock <- thaw vec
MutAlg.inplaceSortBy ford 0 len mblock
unsafeFreeze mblock
where len = length vec
{-# SPECIALIZE [2] sortBy :: (Word8 -> Word8 -> Ordering) -> Block Word8 -> Block Word8 #-}
intersperse :: forall ty . PrimType ty => ty -> Block ty -> Block ty
intersperse sep blk = case len - 1 of
Nothing -> blk
Just 0 -> blk
Just size -> runST $ do
mb <- new (len+size)
go mb
unsafeFreeze mb
where
!len = length blk
go :: MutableBlock ty s -> ST s ()
go mb = loop 0 0
where
loop !o !i
| (i + 1) .==# len = unsafeWrite mb o (unsafeIndex blk i)
| otherwise = do
unsafeWrite mb o (unsafeIndex blk i)
unsafeWrite mb (o+1) sep
loop (o+2) (i+1)
-- | Unsafely recast an UArray containing 'a' to an UArray containing 'b'
--
-- The offset and size are converted from units of 'a' to units of 'b',
-- but no check are performed to make sure this is compatible.
--
-- use 'cast' if unsure.
unsafeCast :: PrimType b => Block a -> Block b
unsafeCast (Block ba) = Block ba
-- | Cast a Block of 'a' to a Block of 'b'
--
-- The requirement is that the size of type 'a' need to be a multiple or
-- dividend of the size of type 'b'.
--
-- If this requirement is not met, the InvalidRecast exception is thrown
cast :: forall a b . (PrimType a, PrimType b) => Block a -> Block b
cast blk@(Block ba)
| aTypeSize == bTypeSize || bTypeSize == 1 = unsafeCast blk
| missing == 0 = unsafeCast blk
| otherwise =
throw $ InvalidRecast (RecastSourceSize alen) (RecastDestinationSize $ alen + missing)
where
(CountOf alen) = lengthBytes blk
aTypeSize = primSizeInBytes (Proxy :: Proxy a)
bTypeSize@(CountOf bs) = primSizeInBytes (Proxy :: Proxy b)
missing = alen `mod` bs