stellar-veritas/bundled/Math/NumberTheory/Powers/Natural.hs
2026-01-25 02:27:22 +01:00

41 lines
1.6 KiB
Haskell

-- |
-- Module: Math.NumberTheory.Powers.Natural
-- Copyright: (c) 2011-2014 Daniel Fischer
-- Licence: MIT
-- Maintainer: Daniel Fischer <daniel.is.fischer@googlemail.com>
-- Stability: Provisional
-- Portability: Non-portable (GHC extensions)
--
-- Potentially faster power function for 'Natural' base and 'Int'
-- or 'Word' exponent.
--
{-# LANGUAGE Safe #-}
module Math.NumberTheory.Powers.Natural
{-# DEPRECATED "It is no faster than (^)" #-}
( naturalPower
, naturalWordPower
) where
import Numeric.Natural (Natural)
-- | Power of an 'Natural' by the left-to-right repeated squaring algorithm.
-- This needs two multiplications in each step while the right-to-left
-- algorithm needs only one multiplication for 0-bits, but here the
-- two factors always have approximately the same size, which on average
-- gains a bit when the result is large.
--
-- For small results, it is unlikely to be any faster than '(^)', quite
-- possibly slower (though the difference shouldn't be large), and for
-- exponents with few bits set, the same holds. But for exponents with
-- many bits set, the speedup can be significant.
--
-- /Warning:/ No check for the negativity of the exponent is performed,
-- a negative exponent is interpreted as a large positive exponent.
naturalPower :: Natural -> Int -> Natural
naturalPower = (^)
{-# DEPRECATED naturalPower "Use (^) instead" #-}
-- | Same as 'naturalPower', but for exponents of type 'Word'.
naturalWordPower :: Natural -> Word -> Natural
naturalWordPower = (^)
{-# DEPRECATED naturalWordPower "Use (^) instead" #-}